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The Veneziano model is applied to the reaction ~7r —+ mS, where S is any particle of spin S, isospin 0 or 1.
For particles with natural parity, I' = (—1)8, we require that our amplitude not be coupled to any odd daugh-
ters. This fixes the relative magnitudes of the helicity amplitudes and constrains the particles S(co,A2, ~ )
to lie on a trajectory which is parallel to the degenerate p and f trajectories. For particles with unnatural
parity, P= —(—1)8, we demand that the amplitude satisfy the Adler consistency condition. This gives
mass restrictions on the sequence of particles 7i-, A I, ~

I. INTRODUCTION

ECKNTLV Veneziano' has proposed a simple and
elegant form for the scattering amplitude for the

process mx —+neo. The expression for the scattering
amplitude in terms of P functions satisfies crossing
symmetry and Regge asymptotic behavior. He also
noted that a restriction on the sum of the trajectories
in the form e(sig)+n(S~8)+n(sir)=2 resulted in the
decoupling of "odd daughters" and gave the intercept
for the exchanged p trajectory in very good agreement
with experiments. While many ambiguities of the simple
Veneziano form have been debated in the literature, '
it is of considerable interest to extend his considerations
to other reactions' and explore the physical conse-
quences. In this paper we investigate the consequences
of such a generalization to the case mx —+ xS, where S
is a particle of arbitrary spin S.

In Sec. II, we treat the case when Shas natural parity,
with C= P= (—1)8. We show that there exists a simple
amplitude satisfying crossing symmetry and Regge
asymptotic behavior, in which, under the condition
n(si2)+n(s23)+n(s~i) =5+1, the odd daughters are de-

coupled. This generalizes the result of Ademollo et al.4

This condition is simultaneously satished by all re-
sonances on the degenerate p ftrajectory. In -Sec. III,
we treat the case of unnatural parity, P= —(—1)8.
Here we impose the Adler consistency condition' that
the amplitude should vanish when any pion four-
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momentum vanishes and discuss the restrictions on the
trajectory on which the unnatural particles lie. Section
IV is devoted to the summary of results. Finally, in the
Appendix, we write out the amplitudes in a few simple
cases.

II. NATURAL PARITY

The observed particles with natural parity,
P= (—1)8, have C= P, which is consistent with quark-
antiquark. states. Hence, those particles which are
coupled to three pions have G= (—1)i+8= —1. Thus,
the particle S has even (odd) isospin I when S is odd
(even). We consider only isospins 0 and 1, so that the
particle S has the quantum numbers of the ao or the A2.
Similarly, we assume that the exchanged particles have
isospins 0 or 1, and they therefore have the quantum
numbers of the p or the fo.

A term of the amplitude for the reaction ~x —+ xS, S
with natural parity, can be written

A (si2~s23, s8i)
= constX L1123&pasvpi p2pp8ySp" ~ (pa)'(pi) "V(s12p23)

+permutations on (123)$. (2.1)

The isospin factor I»& is discussed below Lsee Eqs.
(2.6) and (2.7)]. All pion four-momenta are taken to
be incoming (see Fig. 1).S„... is the polarization tensor
for particle S. It is symmetric in its S indices, traceless
and orthogonal to pa, i.e.,

S "'ps.= —S„....(pi+ pm+ p3),= 0. (2.2)

In (2.1), S„...(Ps)z(Pi)~ is understood to mean the
contraction of the polarization tensor S„... with I
factors of p3 and 3f factors of pi. Thus, l. and M must
satisfy I+M= S—1.The orthogonality condition (2.2)
together with the four-momentum conservation equa-
tion pi+p2+p8+pa ——0 means that in the contraction

FIG. 1. Diagram for the reaction vrx ~ ~S. The
pion four-momenta P1, P2, P3 and the four-momen-
tum of S, pa, are all incoming, pI+p2+p3+p8=0.
The invariants s;; are defined to be s;; = —(p;+p;)'.
1487
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spy ~oo
V($123$28) ~ $12

$23 fixed
(2.3)

of 5„... with powers of the momenta, only two of the
latter are independent; we have chosen to use Pi and
P8. By summing over all permutations in (2.1), we auto-
matically satisfy crossing symmetry. It is necessary,
however, to consider the restrictions on V($», $28) from
asymptotic behavior.

For this purpose, consider the limit as s~~ —+~ with
s» fixed. Since the kinematic factor multiplying
V($»,$28) goes as $12 111 t111s llmlt, V($12,$28) sllould
have the asymptotic behavior

Now consider the amplitude

=CO11StX 2 128&paPYPIaP2PP8rSp" ~

Lxpi —(1—x)p8]
-'

dx +permutations, (2.8)
Xa13(1—X)a23

which is a particular combination of terms from (2.1)
and (2.5). S„...[xpi —(1—x)p8$ ' is again understood
to mean the contraction of 5„... with the appropriate
factors of Pi and P8 after the expansion of the binomial
has been performed. Thus, for example, if S= 1,

where n28 ——n8+n'$28 is the exchanged p jtrajec-tory.
The other relevant term V($28,$12) is generated in the
permutation where Pi and P8 are interchanged. The
kinematic factor of this term goes as s~2 +'; hence
V($28,$») should have the asymptotic behavior

dx x- »(1—x)
—» =B(1—n», 1—+28), (2.9)

which is the Veneziano form for xx —+ zm. If 5=3, we
have

Sqq ~Do
V'($ $ ) ~ $ a33—R'-I

spy fixed
(2.4)

Lxpi —(1—x)p1$2
Spy y ds

xa»(1 —x)a»

SppaLPIpPIaB(3 +123 1 +28)

These considerations suggest for V($12,$28) the modified
Veneziano form' 2pi,—p8,B(2 n», —2 —3228)

+p,„p,.B(1—n», 3 n28) $—, (2.10)
F(S—I.—n12) 1'(S—IV —n28)

F(5+1—n12 —n28)
(2.5) From (2.8) the part of As that contributes to the

poles in, say, the 12 channel, is given by

This is the Euler p function B(S—L—n12, S—M —n28).
The isospin factor I»3 is uniquely determined. If S

is odd, i.e., IS=0,

I128= '91' (812X'88) 3 (2 6)

I128 {'gl'812) ('l8' 'gS)+ (gl' 9$) (92''98)
—( li 68)( 12 ls) (

where q; denotes the isotopic-spin vector of the particle
i. If 5is even, i.e., I~=1,

6XS GpaP3'PiaP2PP3~Sp. ..

2A.s'.

Pxpi —(1—x)p8]s '
dS

x»(1—x)»

Lxp2 —(1—x)p8]s '
—(—1)'» dx—

xa"(1—x)a"
(2.11)

The particular form of I128 in (2.7) results from our
requirement that there are no exchanged particles with
I= 2. Written in terms of projection operators, Ii23 in
(2.7) is 3P8+2PI, where P8, Pi are the 12-channel
I=0, 1 projection operators. ~

'The form for U(s, t) given in (2.5} is not unique. One can add
an integer J to the argument of each I' function in (2.5). One could
also add terms with nonleading asymptotic behavior. We will
consider only the simplest Veneziano form, the one which has the
maximum allowed asymptotic behavior and which permits coup-
ling to all the allowed particles on the internal trajectories.' For convenience, we note that permutations of I123 in (2.9)
can be written as I123=I321=3Ep+2P1, I231=I132=2/2 —Pp, and
I312 I213=3&p —2&&, where Pp E1 and I2 are the 1.2-channel
I=0, 1, 2 isospin projection operators, respectively.

5=even,

5=odd, Ig2=1,

where I~~ is the isospin of channel 12. Xs and X8' are
arbitrary constants.

"Odd daughters"' of the 12 channel occur in I»=1
(0) when 38»= even (odd). We shall now prove that in

The Veneziano model has an infinite number of parallel tra-
jectories with intercepts spaced in unit intervals below the leading
trajectory n. The particles on the trajectories which have inter-
cepts 2n+1 units below the leading trajectory are called the
"odd daughters. " These daughters should not be confused with
the Freedman-Wang daughters.
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(2.8) the odd claughters are decoupled if

u12+u28+u81= S+1 (2.12)

After making the binomial expansion of the numerator
of (2.13), we consider a typical term

(—1) 'p ' 'p8' dx — . (2.14)
xa»(1 —x)"I

Now from the properties of the I' functions one can
easily prove that

dxx (1—x) 8=(—1)"+'

dx x—(1—x)—'+ +~, (2.15)

when n is an integer. Using this property, (2.14) can be
transformed to

I

( 1)S—Ip S I jp j dX XS I j—a—»(—1 —
X-) a23—

0

—( l)S—Ip S-I—jp j( 1)S—j-a»

1

dx xs I 3 a»(1 —x)&a»+a31 s I+j) (2—.16)

( 1)a12+lp S—I—j( p )j
'xs ' 3(1—x)3

Xa12 (1—X)a23
(2.17)

by showing that the poles in n» in (2.11) vanish when

(—1) "+ "=—1. For this purpose, consider the second
term (2.11). By using the momentum conservation
equation,

[xp2 —(1—x)p33' '
ds

xa12 (1—x) a31

I g S—1

=(—1)s ' dx— — —. (2.13)
x»(1—x) 'I

this case have the quantum numbers of m- and Ay.
For the sake of completeness in what follows, we will
consider S to have both isospins 0 and 1.

The amplitude in the present case will have the
general form

2 ($12)$23)$31)

=«»tX[I123S. (p8) (pl) V(s1,2 $28)

+permutations]. (3.1)

The notation is the same as in Sec. II, but with the
condition I.+3E=S. If we use the symmetry~ I»3
= (—1)rs+II821, we can write the amplitude A in (3.1)
in the form

A = constXS (II28[p3 pl V(s12,s28)
—(—1) pl p8 V($283$12)j+I231[pl p2 V($283$31)
—(—1)rsp2'pI~V($31, $23)j+I812[p2'p8 V($81,$12)

—(—1) 'p8 p2 V($12,$3I)]}. (3.2)

Note that we need only consider forms with 1&M,
since up to an over-all sign, the amplitude generated by
permutations from P8 Pl V($12,$23) is the same as that
generated from PI P3 V(s28, s12).

By requiring the amplitude A to have the proper
asymptotic behavior, from considerations analogous to
(2.3) and (2.4), the function V(s12,s23) is constrained
to be a sum of terms of the form

r(m —a„)r(~—.„)
)

F(m+28 —p —n„—a,:)
(3.3)

with m)M+p, n)I.+p, and p=integer&0. The last
ensures that the residues of the poles of (3.3) are poly-
nomials. Further, if all the poles are to be either on the
leading p ftrajectory, or-its daughters, then m and n
should be integers. Finally, the conditions m&1, e&1
must hold in order to avoid poles at o.;,=0, which would
be the "I"ghost" on the p ftrajectory at -s;3~—0.5
GeV2. For later use, we note that (3.3) vanishes if
and only if

provided n12+u»+u31=S+1. Combining all the terms
in the expansion, the second term, therefore, can be
written and

uI2+u23+u31 m n+P= integer& 0

L*pl —(1—x)p83' '
( 1)a»+I

xa12(1 x) a23
(2 1g)

III. UNNATURAL PAMTY

We now consider the case where the particle S has
parity (—1)s+'. The physically interesting particles in

Thus the total 12-channel pole contribution is pro-
portional to 1+(—1)1»+a» and hence the stated result
fo]lows.

n12 —m/integer&0, n» —28&integer&0. (3 4)

We now insist that the amplitudes satisfy the Adler
consistency condition, ' ' namely, that the amplitud es
vanish when a pion four-momentum vanishes. In the
natural-parity case, the amplitude automatically
vanishes because of the kinematic factor 3„83,PI P2$P8, .
Here, however, we will find that in order to satisfy
the Adler condition (a) certain leading amplitudes must

C. Lovelace, Phys. Letters 28B, 265 (1968).
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2u(m ') =integer) p&1. (3.8)

Experimentally, 2u(m„s)~1. Lovelace' 6rst observed
that this ensured the Adler condition for a ~-m- ampli-
tude of the form (3.3), with m=l= p= 1. Condition
(3.7), V(u(m '),u(mss)) =0, is then satis6ed for any 0
particle belonging to the same family as the pion. This
family of 0 particles will have masses squared which
are given by

ms-'=m. '+RX(u')-', R= 1, 2,

We now consider S=i; here I= j., 35=0, so that
m= p&1, N=1+p. In order to have the coefficient of
Irss in (3.2) vanish [condition (3.6)g, we need either
IB 1or 2u(m s) &——1+P. Since 2u(m ') = 1, the second
possibility, whichrequires P=0, isruledoutbym= p& 1.
Thus condition (3.6) cannot be satis6ed by the leading
amplitude for an /=0, S~= 1+ particle. "For an I= I,
S~= 1+ particl- call it A—condition (3.6) is satis6ed. ,
and condition (3.7) is satis6ed if u(m s)+u(M"')

beabsent or (b) theparticles Smustlie on a well-de6ned

family of trajectories. ' "
For the sake of definiteness, let us consider the limit

ps-+0. Since we generate crossing-symmetric ampli-
tudes, the same conclusions will be valid if we let p'
or Ps go to zero. In the limit ps —+0,

u12 u23 up(mw)y usl up(ms)g (3.5)

and S...,p', = —S... Ps„because of (2.2). If we make
the arbitrary assumption that the amplitude contains
only leading terms, i.e., in (3.2), the functions V are of
the form (3.3), where m, I, and p satisfy the equalities
m=3II+p and e=L+p, then in order to satisfy the
Adler condition we note the following: The coefIjcient of
Irss fin (3.2)j vanishes only if

(—1)re=(—1)s or V(u(m. ') u(m. '))=0. (3.6)

The coefficients of I»& and I»2 vanish only if

V(u(m ') u(mss))=0 or 35&0. (3.7)

We 6rst take the case S=O. Here 35=I.=O, so
m=n= p&1. If Is 1, asin ——the casewhenSis thepion,
(3.6) implies that we must have V(u(m '),u(m '))=0,
i.e., from (3.4),

=integer&S+1=2. The integer p must be chosen
greater than or equal to 1 in order to avoid the P' ghost.
Since u(m, ') =-,', this last equation can be written

u(3E"') —u(m ') =integer)1. (3.&))

Hence, the Adler condition is satisied if the A is on a
trajectory parallel to the p ftra-jectory which is either
the x trajectory or one of its daughters. The observed
A~(1070) is in fact on a trajectory with the pion, which
has the canonical slope~i GeV '. The condition
2u(m s) =1 implies that the n.-Ar trajectory is one-

half unit below the p ftraj-ectory. Furthermore, we
obtain the famous relation m",'+m '=2m, '.

For higher spins, S&2, we first notice that condition
(3.6) cannot be satis6. ed for (—1)re=(—1)s+'. We can,
however, make the coeKcient of I~ss vanish as ps —+0
by taking a combination of terms of the form (3.2),
where M varies over the range 0&%&-,'S. For I,
cVWO, the last four terms in (3.2) vanish since they
have a coeKcient PP or Ps~. If M=O, however, we
must satisfy (3.7):

u(m ')+u(ilfa') &5+1.
This condition requires the particle S to be on the z-2 I

trajectory or one of its daughters.

IV. SUMMARY

We have given a general method of constructing
crossing-symmetric Veneziano-type amplitudes for the
reaction xx —+mS, where S is a particle of arbitrary
spin S and parity &(—1)s. When S belongs to the
natural-parity sequence, we have found a solution in
which all the odd daughters of the p ftrajectory -are

decoupled, provided the exchanged trajectories satisfy
the condition urs+uss+usr =S+1, ie.

(Ms'+3m ')u '=5+1—3up(0). (4.1)

The condition (4.1) implies that the natural-parity
particles lie on a trajectory parallel to the p ftrajectory-
with intercept 3u, (0)—1+3u,'m '. This is in fact well

satisfied by the co-A2 trajectory.
In the unnatural-parity case, we impose the Adler

condition and And that the unnatural-parity particles
must lie on a trajectory a& which satisfies

u~(3IIs')&up(iVs')+u (m ') —1. (42)

If we consider the pion, ' uU(m ')=0 and hence
2u, (m ')=integer&1; empirically the equality holds.
Thus u~(Ass) &u, (Mss) —s. This means that the tra-
jectory 0.& must be a member of the family of trajec-
tories whose parent is the pion trajectory which must
be parallel to, and lie one-half unit below the p ftra--
jectory. Similar results are obtained by Ademollo et al."

Clearly, the above results on the trajectories are in
good agreement with experimental data, as far as they
exist. It is not clear, however, why this should be so.
In the natural-parity case, the mystery is why odd

0M. Ademollo, G. Veneziano, and S. Weinberg, Phys. Rev.
Letters 22, 83 (1969).

"We would like to note here that for particles S with isospin
1 (0) and with even (odd) spin, we can construct an amplitude,
similar to Eq. (2.7), which decouples all odd daughters,

I+PI—(1—&)PajaA~ II23S. . . Ch +permutations
&~1~+1(1 &)~»

provided n12+n23+u31 ——S—1. This restriction, however, leads
to "ghosts. " The leading p and fp trajectories have the form
n12 ~+s12/2m 2. Hence in the limit nz '=0, the particles with
+=0, 1, 2 wilfhave masses (squared) equal to —Ses~s, 3m', —
and —m~~, respectively. Besides, the amplitude does not satisfy
the Adler condition.

"According to the latest Particle Data Group I ¹ Barash-
Schmidt et u/. , Rev. Mod. Phys. 41, 109 (1969)j, there is no
particle known with I@=0-, S~=1+.
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daughters should be required to be absent from the
amplitude under consideration, and in particular
through the condition (4.1) on the p ft-rajectory
rather than by subtraction of nonleading terms, 0 la
Mandelstam. " It should be noted that since "odd
daughters" are present in xx scattering, their absence on
arm —+ mS would imply the vanishing of their coupling
to mS, S=co, A2, ~ ~ . In the unnatural-parity case, the
Adler condition is a well-established principle, but it
is not clear why it should be satisfied by the leading
Veneziano form alone. There is the further mystery
of why the lack of Pomeranchon exchange in the ampli-
tude was not serious.
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APPENDIX

The purpose of this Appendix is to illustrate the
application of our general results in a few simple cases.

A. m~ —+ ~22

From (2.1),the 1-2 channel poles are given by

�

4&, v(2 —„)v(l—„) v(l —„)v(2—„))8paPyPlaP2PP37Spv Ply P8v
6X2 F(3—Q12 Q23) F(3 Q12 Q23)

F(2—a12)F(1—n81) F(1—a12)F(2 —n13)

(~ p,„—p,„.(A1)
F(3—Q12 —Q31) F(3—Q12 —Q23)

4gA8pagpavv&pasyPlaP2PP3ySpyP3y ~

+g&~&p-()7pl-p2()p»S"p3. (n') '
Hence

Hence, the residues of the p and f, pole are, respectively, the residue of the p pole
given by

(A6)

6~2&pa)32 plap2(lp3lSpvLplv p2v+ p8v(n31 Q28)](n )

(A3)

Q31 Q28 a ($81 $28) 2n p3' (p2 pl) .
If we write the elementary p~~ and A&pir couplings

in momentum space in the form

14=+2Q gA2pvvgpvvvv ~ (A7)

Thus ) 2 can be determined from the known decay rates
of A2 —+ pm and p —+ em-. The products of the couplings
Sew and SA2x are then completely determined. Thus
we note that in (A3) products of couplings of flrlr and
fA22r appear. Equation (A3) contains the two inde-
pendent couplings A2flr in a definite ratio.

(p —p) ( x ) (A4) B. e~ —+ +AD
and

From the general considerations in Sec. III, there are
two independent amplitudes for 2rlr ~ 3rd 1. A general

where p„ is the polarization vector of p, we obtain for amplitude can be constructed in the form

F(2 —n„)F(1—n„) F(1—a12)F(1—n23)
2'=Sphl Ill,pl„—+permutations +SpX1' I128p2„- +permutations

F(2 nl 2 Q28) F(2—Q12 —Q23)
(A8)

The part of the amplitude which contains 12-channel poles is given by

24 — F(2 —n») F(1—Q23) F(2—n») F(1—n») l
P» -+P8.

3X1 1'(2—n12 —n23) I'(2 —n12 —n23)

F(2 — )F(1—1 ) F(2—„)F(1—„)l)~ p. — +p ~
F(2—n„—n12) F(2 —Q12 —n, l) )

4l(1 F(1 Q12)F(1 Q28) 1 (1 Q12) F(1 Q81)
p,„--~p,„.(A9)

Q 1 F(2—Q12 —Q28) F(2—Q12—Q31)

"Mandelstam (Ref. 2) has discussed the possibility of decoupling odd daughters in the case of spinless particles without any
restrictions on the trajectories. It is to be seen whether this procedure can be generalized to the case of arbitrary spins and also
whether the Adler condition can be maintained,
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For the p pole, the residue is given by

2X1 4P 1' 4A.1'

Snpt)t((223 (221) Sn(p: —pl), = +4&ls.p»p:. (p' —pl) ——S.(p.—pl)n
Q 0! A

(A10)

For the two independent Ape- couplings, we take

(g is nPn Xg2SnP 2nP s~Pn) (2tn "21sX '9 2) ~ (A11)

Using (A11) and (A4), we calculate the contribution of the p pole to n2r ~ i.rA1 and find for the residue of the p pole

+2glgP~nsn(P2 —Pl).+2g2gpnnsnP»P2 (P2 —Pl) .

Comparing (A10) and (A12), we see that

1
~~1—g gagp~x y ~~1 2O' glgpxx ~

(A12)

(A13)
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Pion Gauge Invariance and Low-Energy Theorems*

G. KRAMERf AND %. F. PALMER

High L~'nergy Physics Division, Argonne 1Vational Laboratory, Argonne, Illinois 60439
(Received 23 December 1968)

Zero-mass pion theories invariant under c-number translations ("chiral transformations") of the pion field
are studied in a general framework. The operator which induces the chiral transformation is defined in Fock
space (in which it is not unitary) and in von Neumann s infinite-tensor-product space (in which it is unitary).
The transformed (noninvariant) Fock-space vacuum is recognized as a coherent state in the tensor-product
space. The generator of the chiral transformation —a constant of the motion in gauge-invariant theories —is
diagonalized, and its eigenvectors, the "chiral states, "are employed in one of two derivations of a low-energy
theorem for zero-mass pion emission and absorption, assuming gauge invariance of the theory. The other
method of derivation is also used to rederive the electromagnetic gauge conditions. Then Lagrangian models
(gradient-coupling, c-number, and operator theory) are studied in which the invariance is realized provided
the current is suitably restricted. Implications of the low-energy theorem are checked (exactly for the c-num-
ber theory, in lowest-order perturbation theory for the operator theory). A larger class of models is then con-
sidered in which, it is shown, the complicated set of transformations under which the Lagrangian is invariant
reduce, by virtue of the field equations and the asymptotic condition, to a simple pion translation when
expressed in terms of the asymptotic fields, and hence obey the supposition of our theorem, which we again
check in lowest-order perturbation theory.

1. INTRODUCTION

''N quantum electrodynamics, the invariance of the
~ - vector potential against local guage transformations
A»n (out)(x) -+ A»n (out)(x)+B„A(x) is necessary be-
cause only then is the theory a Lorentz-invariant
description of zero-mass (spin-one) particles. ' A gauge
principal for pion interactions, @;n (out) ~ifiin ( ut)+c,o
however, is apparently neither natural nor necessary.
No classical limit exists (as in quantum electrody-
namics) which guides one to such an invariance; more-
over the invariance requires pions of zero mass and is
therefore physically interesting only when it is broken.
However, many theories of current interest may be
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pion gauge-invariant in the limit of vanishing pion mass.
'tA'e have in mind the various phenomenological Lagran-
gians of the past few years, which are invariant under
a set of transformations (of the interacting fields) which
contains p —+ P+c. Thus, we expect amplitudes calcu-
lated from such Lagrangians to obey pion gauge con-
ditions in the limit of zero-pion ma, ss. Since the Lagran-
gians (which appear to incorporate the current algebra
results) include many ingredients beside pion gauge
invariance in the zero-mass limit, it is interesting to
determine which if any of their predictions are due
solely to the pion gauge conditions. The Adler' con-

sistency condition, for example, requires that the m.A

forward scattering amplitude vanishes when one of the
pion's four-momentum goes to zero. This result is
essentially based on the hypothesis of partially con-

~ Stephen L. Adler, Phys. Rev. 137, 81022 {1965);139, 81638
(1965).


